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Abstract

In the classical Cramer Lundberg Risk model with claim amounts that follows a
Weibull distribution, we consider the amount of capital required to have a fixed value
of probability of ruin as risk measure (VaRu), as well as the coherent version of
it, the Tail Value at Ruin (TVaRu). Both measures are based on the probability
of ruin. Therefore, one of the goals of this work, is to estimate adequately this
quantity, especially when its value is very low. There is a well known analytical
formula that deals with the computation of this probability when the claim amounts
are exponentially distributed. Then, the Weibull distributed claim amount assumption
due to its parameter τ > 0 allow us to consider three cases:

• The light tailed case when τ > 1.

• The heavy tailed case if τ < 1.

• The same as the exponential case when τ = 1.

For the three cases we have performed crude Monte Carlo approaches. However, since
this problem corresponds to rare event simulation, the Monte Carlo method can not be
efficient. In order to avoid that, we have applied some variance reduction techniques.
For the light tailed case, the importance sampling method by the exponential change
of measure shows a better performance than the crude Monte Carlo. In the heavy
tailed case, we have used control variates as well as conditional simulation algorithms,
that works much better than the crude Monte Carlo method. At the end of this work
we provide some R functions implemented that perform every step of the described
methods and some numerical examples.





Introduction

The Cramer Lundberg Risk process is a stochastic model that describes the evolution
of the reserve of an insurance company at time t ≥ 0. For this model we require a
claim arrival process {Nt}t≥0 such that N0 = 0 is an homogeneous Poisson process
with rate λ > 0. We suppose that the claim amounts {Xi}i≥0 are Weibull distributed
and a constant premium rate c > 0 such that c = (1 + β)λµ, where β is the security
loading and µ is the mean of the claim amount distribution. The initial capital is r0.
By all this assumptions the risk process is described as follows.

Yt = r0 + ct−
Nt∑
i=0

Xi (1)

From the previous model, the probability of ruin is the probability of the reserve falls
below zero. i.e

ψ(x) = P (Yt < 0) (2)
and its complement is given by

FS(x) = 1− ψ(x)

that is the survival probability of the maximal aggregated loss.
We are interested in the estimation of two risk measures based on this quantity. The

value at ruin that represents the amount of required capital in order to have a fixed level
of probability of ruin and the tail value at ruin, that is the the conditional expectation
of the maximal aggregated loss given that it is bigger than the corresponding VaRu at
some level ε tipically very small. Both measures are presented in (Baumgartner &
Gatto, 2014).

The estimation of the first quantity, V aRu is crucial to obtain the second one.
This measure is defined in such a way

V aRu(ε) = {x ≥ 0|ψ(x) ≤ ε} (3)
= {x ≥ 0|FS(x) ≥ 1− ε} (4)
= q1−ε (5)

From the last expression, we conclude that in order to determine the value at ruin at
some level ε ∈ (0, 1), we only need to find the quantile at level 1− ε of the distribution
of the maximal aggregated loss S. By using the Monte Carlo method, we estimate
the probability of ruin ψ(x). Then, since it is the complement of FS, we have found
an estimator of it, let us call it F̂S.
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Graphically, having the estimated distribution of the maximal aggregated loss S,
we need to find the intersection of

F̂S(x) = 1− ε
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Having estimated the value at ruin, we can fit a regression model in the tail and
compute the corresponding estimator, the tail value at ruin can be found using an
explicit formula that we will show later.

However, since we are dealing with rare event simulation, is important to consider
variance reduction techniques. Supposing that the probability of ruin of interest is
0.00001 it means that we need at least to generate 100000 simulations in order to get
one ruin. It explains why the Monte Carlo method is not efficient at all under this
framework.

Considering light tailed claim amounts, the importance sampling approach by the
exponential change of measure is used. A theoretical development of this method is
found in (Søren Asmussen & Glynn, 2007). Also, we have used several results that can
be seen in detail in (Gatto, 2014b). In the last reference, is explained the algorithm in
the case of the Risk process for claim amounts with distribution F . A brief summary
of this method also can be found in (Gatto, 2014a), where is presented the method of
importance samping and some applications.

Next, for the heavy tailed case, we present three algorithms based on conditional
simulation and control variaables, important references to this approaches are the
works of (S Asmussen & Binswanger, 1997) who consider conditional simulation
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methods, (Juneja, 2007), who estimate efficiently tail probabilities of heavy tailed
distributions and (Søren Asmussen & Kroese, 2006). We have used the Pollakzeck-
Khinchine formula and some results related to subexponential distributions when the
claim amunts are heavy tailed. Also, we have used the estimation of random variables
following an integrated tail Weibull distribution using the method of acceptance
rejection.

The idea of the conditional Monte Carlo methods presented in this work is only
generate k − 1 claim amounts and consider the probability that the next claim causes
ruin. For the second conditional algorithm, we have included the use of order statistics
considering that for subexponential distributions one large claim amount causes ruin.
This idea has been discussed in (S Asmussen & Binswanger, 1997).

The structure of this master thesis is the following, in chapter 1 we start with
a survey of risk theory, defining important key concepts to understand the Cramer
Lundberg model and the measures of risk of interest. Next, in chapter 2, we present
some results regarding to variance reduction methods. In chapter 3 we present the
Monte Carlo estimators as well as the algorithms of variance reduction. A numerical
study of the algorithms and a brief explanation of the programming schemes used is
presented in chapter 4. Finally, we show the conclusions in chapter 5.
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Chapter 1

The Risk Process

1.1 Introduction

One of the key concepts in the actuarial field is the notion of risk, since the importance
for insurance companies, banks or other financial institutions is relevant to have
technical methods of managing risk analysis tools Therefore, our interest is to deal
with a measurement of the insurer risk. For that reason, we present the classical
model studied in actuarial risk theory, called the risk process introduced in 1903 by
the Swedish actuary Filip Lundberg.

1.2 Risk Process

In order to define the classical model, we require the following quantities: LetX1, X2, ...
be independent individual random losses or claim amounts with distribution function
F and expectation µ <∞.
kt the number of claims occuring during [0, t], ∀t ≥ 0.
The total loss or claim amount is given by:

Zt =
Kt∑
k=0

Xk

, where X0 = 0, r0 is the initial capital c > 0 is the premium rate (assumed constant).

Yt = r0 + ct− Zt (1.1)

We present now a simulated path of the classical risk process with initial capital r0 = 4
and premium rate c = 3
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Risk Process

time

Y
t

T1 T2 T3

0

r0 X1 X2

X3

Ruin

Figure 1.1: Sample path of the Cramer Lundberg Process

Notation
• Tk is the k − th claim time, i.e

Tk = inf{t ≥ 0 : Kt ≥ k}, k = 0, 1, ..

• Dk = Tk − Tk−1 are the interclaim times.
• If D1, D2, ... are i.i.d, then {Tk}k≥0 or {Kt}t≥0 are called renewal processes.
• We focus on renewal counting process. In this case

ρ = E[X1]
E[D1]

is the ruin parameter.
• Furthermore, we define the security loading by

β = c− ρ
ρ

The main object of the model is to analyze the event when the risk process falls below
zero, this event is called Ruin and its probability is given by:
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Definition 1.1 (Probability of Ruin in the finite time horizon).
Ψ(r0, t

†) = P{ inf
t∈[0,t†]

Yt < 0} (1.2)

where t† is any time horizon.
Aditionally, we define the probability of ruin in the infinite time horizon or simply

called probability of ruin
Definition 1.2 (Probability of Ruin).

Ψ(r0) = lim
t†→∞

Ψ(r0, t
†) = P{inf

t≥0
Yt < 0} (1.3)

We also define the time of ruin given by:
Definition 1.3 (Time of Ruin).

T =
{
inf{t > 0 : Yt ≤ 0} If the infimum exists,
0, otherwise (1.4)

Definition 1.4 (Loss Process). Consider the risk process given above, the Loss Process
is defined as

Lt = Zt − ct, ∀t ≥ 0 (w.l.o.g c = 1). (1.5)
That is the loss minus the new capital of the insurance.

Loss Process

time

L t

T1 T2 T3

0

X1 X2

X3

Figure 1.2: Sample path of the Loss Process
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A random variable of interest is the maximal agreggate loss given by:

S = sup
t≥0

Lt

As a result of the previous definitions, we have the next relation between the risk
process and the maximal agreggate loss.

ψ(r0) = P (inf
t<0

Yt < 0)

= P (inf
t≥0
{r0 + c.t− Zt} < 0)

= P ({r0 + inf
t≥0
{c.t− Zt}} < 0)

= P ({r0 + inf
t≥0
{−Lt}} < 0)

= P (r0 − sup
t≥0

Lt < 0)

= P (sup
t≥0

Lt > r0)

= 1− P (S ≤ r0)
= 1− FS(r0)

(1.6)

As we have seen, an important part of the classical risk process is the total claim
amount, that is given by a Compound Poisson Process. In order to define it, we
present some required definitions.

Definition 1.5 (Counting Process). A counting process {Nt}t≥0 is a collection of
non-negative, integer-valued random variables, such that, if 0 ≤ s ≤ t, then Ns ≤ Nt

Now, we present three ways to characterize the Poisson Process, It can be done if
we focus on i) the number of events that occur in fixed intervals, ii) when events occur,
and the times between those events, or iii) the probabilistic behaviour of individual
events on infinitesimal intervals.

Definition 1.6 (Poisson Process). A Poisson process with parameter λ is a counting
process (N(t))t≥0 if the following conditions hold:

• The process starts at zero: N(0) = 0 a.s.

• For all t > 0, Nt has a Poisson distribution 1 with parameter λt.

• (Stationary increments) For all s, t > 0, Nt+s −Ns has the same distribution as
Nt. That is:

P (Nt+s −Ns = k) = P (Nt = k) = eλt(λt)k
k! , for k = 0, 1, ...

1An integer valued random variable M is said to have a Poisson distribution with parameter
λ > 0 (M ∼ Pois(λ)) if it has distribution

P (M = k) = e−λλ
k

k! , k = 0, 1, ...
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• (Independent increments)For 0 ≤ q < r ≤ s < t, Nt − Ns and Nr − Nq are
independent random variables.

Example 1.1 (Poisson Process). A trajectory of a Poisson Process with exponential
interarrival times with parameter λ = 0.6 until time 15 is given by:

0 5 10 15

0
2

4
6

8
10

Poisson Process

 Time 

 A
rr

iv
al

s 

Figure 1.3: Trajectory of a Poisson Process

$arrival_times
[1] 0.000000 1.323158 3.590259 6.447827 6.562793 6.966239 8.174458
[8] 8.214520 8.296459 8.661917 14.454117

$cum_time
[1] 18.98112

Definition 1.7 (Compound Poisson Process). Let {Nt =}t≥0 be a Poisson Process
with parameter λ and let X1, X2, ... be a sequence of independent and identically
distributed random variables, each with distribution function F , independent of Nt

∀t > 0. We define the Compound Poisson Process {St}t≥0 with parameter λ by:

St =
Nt∑
i=1

Xi
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with St = 0 when Nt = 0

Example 1.2 (Compound Poisson Process). The next plot is a trajectory of a
compound Poisson process, with interarrival time exponentially distributed with
parameter λ1 = 2 generated until time 15. The jumps are exponentially distributed
with parameter λ2 = 0.5.

0 5 10 15

0
10

20
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40
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Compound Poisson Process

Time

Le
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l

Figure 1.4: Trajectory of a Compound Poisson Process with exponential
distributed claims

$arr_times
[1] 0.00000000 0.05495328 0.51637879 0.67128581 2.03192660
[6] 2.33587029 2.50071322 2.90023104 2.96352788 4.27985007

[11] 4.34058618 4.38185238 4.55373168 4.73687785 4.82749609
[16] 5.50122235 5.53815612 6.57913733 7.08290242 8.39951503
[21] 8.62248451 8.90194356 9.97407181 10.14225626 10.60762281
[26] 11.38558021 11.65090014 12.92376959 12.92600208 13.32256559
[31] 14.22993637

$level
[1] 0.000000 3.254944 3.416789 7.621798 12.576941 15.153164 16.500528
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[8] 19.631373 19.789200 20.256232 21.689466 24.982743 25.391082 25.797858
[15] 26.179389 27.361660 28.132648 29.028627 30.717125 36.273224 37.930402
[22] 40.919202 41.958911 44.018289 49.840428 50.826397 52.733440 58.339177
[29] 59.734641 59.906415 63.603010

$cum_time
[1] 15.06618

$counting
[1] 31

1.3 Loss Distributions

We present a brief survey of some classes of distributions that are used to model claim
amounts X1, X2, X3, .... These distribution can be distincted between the tails that
tend to 0 faster or slower than the exponential distribution. We note the tail of a
distribution F as F̄

Definition 1.8 (Light Tailed Distribution). Let X a random loss with distribution
F , and λ > 0. Then X is called light tailed or lighter than exponential if

lim
x→∞

F̄ (x)
e−λx

= 0 (1.7)

Definition 1.9 (Heavy Tailed Distribution). Let X a random loss with distribution
F , and λ > 0. Then X is called heavy tailed or heavier than exponential if

lim
x→∞

F̄ (x)
e−λx

=∞ (1.8)

Traditional examples of loss distributions can be found in the actuarial literature.
We present some loss distributions in the light and the heavy tailed case. More
distributions can be found on: (Gatto, 2014b), (Søren Asmussen & Albrecher, 2010)
and (H. Albrecher, Teugels, & Beirlant, 2017)

Example 1.3 (Exponential Distribution). The random loss X follows an exponential
distribution if X has a density fX(x) = λe−λx and distribution function FX(x) =
1− e−λx ∀x > 0 and ∀λ > 0. The parameter λ is called the rate of the exponential
distribution
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Figure 1.5: Exponential distribution

Example 1.4 (Weibull Distribution). Let X a random loss that follows an exponential
distribution with parameter λ, then Y = X

1
τ ∀τ > 0 follows a Weibull distribution.

Its distribution is given by FY (y) = FX(yτ ) = 1− e−λxτ ∀y > 0. The parameter τ is
called the Weibull index i.e Y ∼ Weibull(λ, τ).

The Weibull distribution can be classified according to the Weibull index in light
tailed (τ > 1), heavy tailed (0 < τ < 1) or it simply is reduced to the exponential
distribution if τ = 1.
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Figure 1.6: Weibull distribution

Moreover, for values of τ ∈ (0, 1) the Weibull distribution belongs to the class of
subexponential distributions. We introduce also an important definition that we are
going to use in the development this thesis. We have followed the definition given in
(Lin, 2006)

Definition 1.10 (Integrated tail distribution). Let X a nonnegative random variable,
with distribution function F , also denote the kth moment of X by pk = E[Xk], if it
exists. The integrated tail distribution F0 of X or FX(x) is a continuos distribution
on [0,∞] such that its density is given by

f1(x) = F̄ (x)
p1

x > 0

where F̄ (x) = 1− F (x). This distribution is often called the equilibrium distribution.

Further details and properties of the integrated tail distribution can be found in
the mentioned reference above.

For the Weibull distribution, we can express the integrated tail distribution in
terms of the incomplete Gamma function performing the change of variable y = tτ as
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follows.

F0(x) = 1
µFX(x)

∫ x

0
(1− FX(t))dt

= 1
µFX(x)

∫ x

0
exp(−tτ )dt

= 1
µFX(x)

1
τ

∫ xτ

0
exp(−y)y 1

τ
−1dy

= 1
µFX(x)

1
τ
γ(1
τ
, xτ )

Similarly we obtain
F̄0(x) = 1

τµFX
Γ(1
τ
, xτ )

where Γ(a, u) =
∫∞
u ta−1exp(−t)dt is the complement of the incomplete Gamma

function. This representation is an important result for us since it allow us to evaluate
the integrated tail distribution F0 for a value of x since in most of the statistical
packages the incomplete gamma function is implemented.

Something important that we are going to use in the next chapters is the Gamma
distribution. We mention some facts important about this distribution:

Definition 1.11 (Gamma Distribution). Let X a random loss that follows a Gamma
distribution with shape parameter alpha and scale parameter θ, there is no a closed
form for the Distribution function, the expression is given by:

FX(x) =
∫ x

0

1
Γ(α)θα t

α−1e−t/θdt x > 0 (1.9)

Using a change of variable u = t
θ
we have du = dt

θ
and t = uθ and the distribution

FX(x) =
∫ x

θ

0

1
Γ(α)θα (uθ)α−1euθdu

= 1
Γ(α)

∫ x
θ

0
uα−1e−udu

= 1
Γ(α)γ(α, x

θ
)

Where γ(β, w)
∫ w

0 tβ−1e−tdt and Γ(β) =
∫∞

0 tβ−1e−tdt

When the Gamma distribution is raised to a power, the resulting CDF can be
defined as a function of the distribution Gamma FX .

1.4 Measures of Risk
A Risk Measure is a statistical tool used to determine “the chance of an adverse
outcome” (Klugman, Panjer, & Willmot, 2012). In Risk Management is helpful in the
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determination of the amount of capital required to confront adverse outcomes. Also,
it can be applicable by the governments through regulatory entities in order to avoid
insolvency of insurance companies or banks. For example, Solvency II 2, which has
been implemented in the European Union since January 2016, the required capital is
the Value at Risk, in contrast the Swiss Solvency Test, that is a risk based capital
standard for insurance companies in Switzerland uses the Tail Value at Risk.

1.5 Risk measures and coherence
A Risk Measure is a function ρ : Lp(Ω) → R+, representing the amount of capital
required for protecting against a random loss Z.

Definition 1.12 (Coherent Measure of Risk). Let X, Y ∈ Łp(Ω) be two random
losses3 ρ : Lp(Ω)→ R+ is a coherent measure of risk if ρ fulfills.

• ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (subadditivity).

• If X ≤ Y a.s ⇒ ρ(X) ≤ ρ(Y ) (monotony).

• ρ(cX) = cρ(X), ∀c > 0 (scale invariant).

• ρ(c+X) = c+ ρ(X), ∀c > 0 (traslation invariant).

The idea of a risk measure is that given a loss X, ρ(X) quantifies the riskiness of
X, it means that large values of X tell us that X is dangerous.

1.5.1 Interpretation
1. The aggregation of risk is beneficial and in this case the insurance company will

profit, i.e. the risk can be reduced by diversification.
2. The order between the corresponding two losses must be equal to the risks.
3. If a loss is multiplied by a constant, then the risk multiplies in accordance.

Another interpretation is that a change in currency is ineffective.
4. With a resulting loss, results also a corresponding risk.

1.6 Value at Risk (VaR)
Value-at-Risk (VaR) has become the standard risk measure used to evaluate exposure
to risk. In general terms, the V aR is the amount of capital required to ensure, with
high degree of certainty, that the enterprise does not become technically insolvent.

2Solvency II is a set of rules in the European Union that regulates the insurance industries in EU.
That rules are concerned about the amount of capital that EU insurance companies must hold to
reduce the risk of insolvency.

3A randon loss is any non-negative random variable, its distribution function is called loss.
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Definition 1.13 (Value at Risk). Let X denote a random loss, the Value-at-risk of
X is the αth quantile of the distribution of the loss X, ∀α ∈ (0, 1). It is denoted by
V aRα(X),i.e.

qα = inf{x ∈ R : FX(x) ≥ α}

1.7 Tail Value at Risk (TVaR)
In practice, the Value at Risk (V aR), as a risk measure is used in risk management if
the distributions of gains or losses is normal. However, the normal distribution is not
used for describing insurance losses. Consequently, the use of V aR is problematic since
it is not subadditive. A more useful measure of risk is Tail-Value-at-Risk (TV aR). It
has been given some different names including, Conditional Value at Risk (CV aR),
Conditional Tail Expectation (CTE) and Expected Shortfall (ES).
Definition 1.14 (Tail Value at Risk). Let X denote a random loss variable, the
Tail-Value-at-risk is defined by:

TV aR(X) = E(X|X > qα)

where qα is the αth quantile of V aR(X), ∀α ∈ (0, 1)
Now we present two measures of risk based in the previous measures. Both

measures of risk and its computation using saddlepoint approximations appear in
(Baumgartner & Gatto, 2014). First we consider the capital required to obtain a fixed
probability of ruin, tipically very small as a measure of insurer risk. This capital is
called Value at Ruin VaRu. Similarly to TVaR we consider another measure that
fulfills the coherency property, this measure is called Tail Value at Ruin TVaRu.

1.8 Value at Ruin V aRu and the Tail Value at Ruin
TV aRu

Definition 1.15 (Value at Ruin). Consider the probability of ruin of a risk process
ψ(x) = P (T <∞), for any initial capital x ≥ 0. The associated value at ruin V aRu
at level ε ∈ (0, 1) is given by:

V aRu(ε) = inf{x ≥ 0 : ψ(x) ≤ ε} = q1−ε (1.10)

Although, this measure of risk is not subadditive, then is not coherent. In analogy
to the TV aR, we can obtain a coherent measure of risk from the V aRu by considering
the expectation of the maximal aggregate loss given that the maximal aggregate loss
exceeds a fixed value at ruin V aRu.
Definition 1.16 (Tail Value at Ruin). Consider the risk process given in 1.1 and
the corresponding maximal agreggated loss S, then the associated Tail Value at Ruin
TV aRu at level ε ∈ (0, 1)

TV aRu(ε) = E[S|S > V aRu(ε)] (1.11)
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Variance Reduction Methods

Variance reduction methods are useful to produce estimators with smaller variance
than the crude Monte Carlo method. In the context of this thesis, we are interested in
approximate a quantile. The Monte Carlo estimator for this quantity can be obtained
by simulating several replications of the random variable of interest, (The maximal
aggregated loss in our case S), with cdf FS and computing the quantile

q̂1−ε = inf{x : F̂S(x) ≥ 1− ε}

If we suppose that the random variable S follows a normal distribution, the simulation
of the respective quantile at level 0.9951 will need more than 300 million of replications
if we want a confidence interval of length 0.01. The main idea of the variance reduction
techniques is to replace the original estimator by another with the same expectation,
but smaller variance, getting gain in our computations and a better performance of
the crude Monte Carlo method.

2.1 Importance Sampling
Importance sampling provide us an optimal simulation scheme for computing z = E[Z]
in the sense of minimizing the number of generations in order to reach a given level of
precision. The main idea of this method is to find a distribution for the underlying
random variable that asssigns a high probability to those values that are in the relevant
region for the desired approximated quantity. For instance, we are interested in the
probability of ruin in the tails that usually is very low.

2.2 Some definitions on measure theory.
Definition 2.1 (Absolute Continuity). Let ν and λ be two measures on Ω,F . If
ν(A) = 0 implies λ(A) = 0 ∀A ∈ F , then λ is absolutely ccontinuous with respect to
ν, this is denoted by λ << ν

1Solvency II and the Swiss Solvency Test suggest the quantile at level 0.995
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Remark (Alternative characterization of absolute continuity). If there exists f : Ω→
R+ measurable such that λ(A) =

∫
A f(ω)dν(ω) ∀A ∈ F then λ << ν.

The converse of this fact is given by the theorem of Radon-Nikodyn.

Theorem 2.1 (Radon-Nikodyn). Consider λ << ν, then there exists a measurable
f : Ω→ R+ s.t

∫
A f(ω)dν(ω), ∀A ∈ F . Further f is v − a.e. unique (unique up to all

sets A where ν(A) = 0).

We denote f in the above theorem as dλ
dν

and call it as the Radon-Nikodyn derivative
or simply the density w.r.t ν.

Example 2.1 (Typical discrete case). Let Ω = {ω1, ω2, ...} and let ν(A) = card(A)

for A ⊂ Ω. Let f(w) =
∞∑
i=1

piI{ω = ωi} where p1, p2, ... > 0\ Now,λ(A) =

∫
A f(ω)dν(ω) = ∑∞

i=1 piI{ωi ∈ A} =
∑

i≥1s.tωi∈A
pi =

∑
i≥1s.tωi∈A

f(ωi)\ If
∞∑
i=1

pi = 1,

then P (A) =
∫
A f(ω)dν(ω), A ⊂ Ω defines a probability measure on Ω with density

f = dP
dν
, (P << ν).

Now we present the theorem of change of measure.

Theorem 2.2 (Change of Measure). Consider two measures λ and ν and assume
that the density of λ w.r.t ν exists (dλ

dν
). Then, for any measurable function f ,∫

Ω
f(ω)dλ(ω) =

∫
Ω
f(ω)dλ

dν
dν(ω)

Some practical results are the following:

• If λ << τ and ν << τ , then for σ = λ+ ν, we have dσ
dτ

= dλ
dτ

+ dν
dτ

• If λ << ν << τ , then dλ
dτ

= dλ
dν

dν
dτ
, τ . a.e.(chain rule).

• If λ << ν and ν << λ, then dλ
dν

= ( dν
dλ

)−1, In this case λ and ν are said to be
equivalent measures.

Example 2.2. Let Ω = {ω1, ω2, ...}, ν the counting measure and p1, p2, ... > 0 such

that
∞∑
i=1

pi = 1. Let P [A] =
∑

i≥1,s.t.ωi∈A
pi, which is a probability measure equivalent

to ν and let g : Ω→ R+\ We want to compute z =
∫
ω gdν =

∞∑
i=1

g(ωi), thus we write

z =
∫
ω g

dν
dP
dP =

∫
ω g( dpdν )−1dP = ∑∞

i=1
g(ωi)
f(ωi)pi = EP [ g(X)

f(X) ], where f = dP
dν

(f(ωi) = pi)
and X(ω) = ω,∀ω ∈ Ω\

With the results obtained in the previous example we can establish the next montecarlo
simulation scheme. Assume g = IA and card(A) <∞ but difficult to enumerate, thus
we desire

z =
∫

Ω
gdν = card(A)
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• Generate Xi from f , viz. from P .

• Compute ẑ = 1
n

∑
_i = 1n g(Xj)

f(Xj)
with z = lim

n→∞
ẑ

We need this for the importance sampling theorem later. Let (Ω,F) be a measure
space with probability measures P and P̃ and another measure ν. Assume P̃ << P ,
P << ν and ν << P . Denote f = dP

dν
and f̃ = dP̃

dν
, given that ν and P are equivalent,

dν
dP

= 1
f
(from property 3), P − a.s or ν − a.e. (from property 2). Thus dP̃

dP
= f̃

f
.

(Setting of the next theorem)
Let Z be a random variable over (Ω,F) with induced distributions PZ under P and

P̃Z under P̃ . Let fZ be the density of P̃Z w.r.t some measure µ, such that PZ << µ,
P̃Z << µ and µ << P̃Z .
Under these circumstances we give the next theorem. It is used to deduce the
importance sampling theorem.

Theorem 2.3 (Importance Sampling). ˜fZ(z)
fZ(z) is equivalent to f̃

f
, on the restriction of

F to σ(Z). This means that:

P̃ (A) =
∫
A

f̃

f
dP =

∫
A

˜fZ(z)
fZ(z)dP

provided that A ∈ σ(Z), i.e that A = Z−1(B), for some B ∈ B(R)
z = E[Z] is the desired quantity. We assume that P << P̃ on {Z 6= 0} ∩ F

and let L := fZ(z)
f̃Z(z) be equivalent to f̃

f
on the restriction to {Z 6= 0} ∩ σ(Z).

Then z = EP̃ [Z.L] where P̃ is the importance sampling estimator of Z.
Data: Z1, ..Zn
Result: Importance sampling estimator of Z

1 initialization;
2 Let Z1L1, ..., ZnLn be independent generations of ZL under P̃ . Take the

empirical estimator of z := ẑ = 1
n

n∑
j=1

ZjLj

Algorithm 1: Montecarlo Importance Sampling Estimator
Example 2.3. Let X1, X2, ..., Xk be independent with common density fX under P
and let Z = g(X1, .., Xk), we are interested in z = EP [Z]. Let f̃X be the density of
X1 under P̃ ,

L =
n∏
j=1

fX(Xj)
f̃X(Xj)

Then z = EP̃ [ZL] and z̃ has the same form as before.
Lemma 2.1. Let X : (Ω,F)→ (Σ,G) and ν be a measure over (Ω,F). Let µ = ν◦X−1

be the induced measure over (Σ,G) and g a µ− integrable function over (Σ,G) (i.e∫
Σ |g|dµ <∞). Then, for all G ∈ G∫

X−1(G)
g(X(ω))dν(ω) =

∫
G
g(σ)dµ(σ)
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Example 2.4. If ν = P is a probability measure, µ = PX and G = σ = R then:∫
Ω
g(X(ω))dP (ω) =

∫
R
g(t)dPX(t)

This integral is denoted by E[g(X)].

2.2.1 Some Remarks
• The previous theorem ( f̃

f
= f̃z(z)

fz(z)) can be directly shown with this lemma. In
the example where X1, X2, ..., Xk are independent with density fX under P
and independent with density f̃X under P̃ and where Z = g(X1, ...Xk). Then

z = Ep[Z] = EP̃ [ZL] where L =
k∏
i=1

fX(Xj)
f̃X(Xj)

. This is due to the Lemma.

z =
∫
Rk
g(t1, ..., tk)

k∏
j=1

f̃X(tj)dt1...dtk =
∫
R
γdh(γ)

Where h is the induced densty of g(X1, ..., Xk). Once we have these representa-
tions we ask ourselves w.r.t whom should we take the expectation. According to
the choice what we make we will obtain a different likelihood ratio.

z =
∫
Rk
g(t1, ..., tk)

k∏
j=1

fX(tj)
f̃X(tj)

k∏
j=1

˜̃fX(tj)dt1...dtk

= EP̃ [g(X1, ..., Xk)L]

• Variance reduction can be obtained only by appropiate choices of the importance
sampling distribution.

Example 2.5. Let z =
∫∞

0 xe−xdx = 1. Under Pθ, Z ∼ Ex(θ), θ > 0. On the other
hand

Lθ = e−z

θe−θz

= 1
θ
e−(1−θ)z

= EPθ[ZLθ] = EP [Z]
= z where P = P1

Now the second moment is given by:

EPθ [(ZLθ)2] = 1
θ2

∫ ∞
0

x2e−2(1−θ)xθe−θxdx

= 1
θ

∫ ∞
0

x2e−(2−θ)xdx

=
{ 2

θ(2−θ)2 if θ ∈ (0, 2)
∞ if θ ≥ 2
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Consequently:

V arPθ(ZLθ) = EPθ [(ZLθ)2]− E2
Pθ

[ZLθ = EPθ [(ZLθ)2]− 1

We search for the θ maximizing θ(2− θ)3, which is θ = 1
2 . Now since V arP (Z) = 1,

then V arP 1
2

= 2
1
2 (2− 1

2 )2 − 1 = 5
27

If L is P − a.s. non negative and EP [L] = 1, then

P̃ (A) = EP [IAL]

is a probability measure since given A ⊂ Ω

EP [IAL] =
∫
A
LdP

and
0 ≤ EPP [IAL] ≤ EP [IΩL] = EP [L] = 1

given A ⊂ Ω

Example 2.6. Let X ∼ N (0, 1) under P and L = eµ(X−µ)−µ
2

2

EP [L] = e−
µ2
2 E[e−µN (0,1)]

= e−
µ2
2 e

µ2
2

= 1

Theorem 2.4 (Main Result). Let P and P ∗ be two probability measures s.t dP ∗

dP
=

|Z|
EP [|Z|] , P ∗(A) = EP [IA dP

∗

dP
].

∀A measurable and L∗ = dP
dP ∗

= EP [|z|]
|Z| exists over {Z 6= 0}\

Then, the importance sampling estimator ZL∗ under P ∗ has smaller variance than
the estimator ZL under P̃ . i.e
∀P̃ s.t P << P̃ over {Z 6= 0}, LdP

dP̃
exists over {Z 6= 0} and

• V arP ∗(ZL∗) ≤ V arP̃ (ZL)

• If Z ≥ 0P − a.s, then V arP ∗(ZL∗) = 0

Example 2.7 (Compound Poisson Process). Let Y1, Y2, ... be independent random
variables with common density f and let {Nt}t≥0 be an independent Poisson counting
process with rate λ > 0, under P . Then Xt = ∑Nt

i=0 Yi, ∀t ≥ 0 with Y0 = 0, is a
compound Poisson process. Let D1 + D2 + ... + Dn denote the time of the n − th
ocurrence of the Poisson process, for n = 1, 2, ....

Assume that Xtt≥0 remains a compound Poisson process under P̃ , however with
summands density f̃ and Poisson parameter λ̃. Then, using the likelihood ratio process
expressing P in terms P̃ can be found as:

Lt =

e−λRt

e−λ̃Rt

∏Nt
n=1

f(Yn)
f̃(Yn)

λe−λDn

λ̃e−λ̃Dn
, if Nt ≥ 1,

e−λRt

e−λ̃Rt
if Nt = 0,
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2.2.2 Exponential Change of Measure
We have included this section related to risk measures based on a summary of
importance sampling presented in (Gatto, 2014a)

Let X ∈ Rd a random vector, with cumulant generating function KX(v) =
logEP [e〈v,X〉], for v ∈ Rk. Let αdom(k) := {v ∈ Rd : K(v) <∞}, then the probability
measure Pα such that

dP

dPα
= exp{−〈α,X〉+K(θ)}

is equivalent to P on the σ − algebra generated by X and it is called the exponential
tilt of P .

2.2.3 Random walk
Considering the previous example and assume that K ′(0) < 0, that is EP [X1] < 0.
Thus α(0) is the solution in v of K ′(v) = 0 and we define β as the positive solution
of K(v) = 0, which is called adjustment coefficient or Lundberg exponent. For some
X > 0, define the hitting time.

Tx =
min{n ≥ 1|Sn ≤ x}, if the infimium exists
∞ otherwise

The hitting probability is given by

θ(x) = P (Tx <∞) = EPα [I{Tx <∞}exp{−αSTx + STxK(α)}]

From here, Sn →∞, Pα − a.s, implies Tx <∞, Pα−a.s. We can even show: :

Pα[Tx <∞] = 1⇔ EPα [X1] ≥ 0⇔ α ≥ α(0)

Thus any choice of the tilting parameter α such that α ≥ α(0) is relevant and yields
the importance sampling estimator exp{−αSTx + TxK(α)}, under Pα. However the
optimal choise is α = β. We define the overshoot Dx = STx − x, over {Tx <∞}. Then

θ(x) = e−βxEPβe
−βDx

this estimator, was suggested by Siegmund (Siegmund, 1976)and has bounded relative
error.

2.2.4 The Compound Poisson Risk Process.
We consider the Compound Poisson risk process given in 1.1, is the risk process of
an insurance company. We consider the time of ruin in 1.4 The cumulant generating
function of the loss process L1 is given by

K(v) = λ{MX(v)− 1} − v
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for v ∈ R. The exponentiallly tilted probability Pα Pα is defined with the likelihood
ratio process

exp{−αSt + tK(α)} ∀t ≥ 0
and the probability of ruin is given by

θ(x) = P [Tx <∞] = EPα [I{Tx <∞}exp{−αSTx + TxK(α)}]

As before we define β as the positive solution in v of K(v) = 0, then we have
EPβ [S1] = K ′(β) > 0 which means that ruin is certain under Pβ. As we previously
has defined the overshooy as Dx = STx − x, over {Tx <∞}. Then

θ(x) = e−βxEPβ [e−βDx ]

that also has bounded relative error, as x→∞.

2.3 Control Variables
The following random variable C is a control variable if it is positively or negatively
correlated with the random vriable Z, viz the initial Montecarlo estimator of z = E[Z],
and if its expectation µC = E[C] is known and easily computed.\

Let Dα(Z,C) = Z − α(C − µC) for any coeficient α ∈ R, then:

E[Dα(Z,C)] = z

and the variance is given by:

V ar(Dα(Z,C)) = V ar(Z) + α2V ar(C)− 2Cov(Z,C)

Therefore, if α2V ar(C)− 2αCov(z, C) ≤ 0, then V ar(Dα(Z,C)) ≤ V ar(Z)

• Result:\

min
α∈R

= {1− Corr2(Z,C)}V ar(Z)

The minimum is attained at α = α0 = Cov(C,Z)
V ar(Z) . Thus α0C is a good approximation to

Z up to an additive constant. The control variate estimator is Z − α0(C − µC) and
the control variable algorithm is given by:

z̃CV = 1
n

n∑
j=1

(Zj − α0Cj) + α0µC





Chapter 3

Monte Carlo Estimators for VaRu
and TVaRu of the Maximal
Aggregated Loss.

3.1 Introduction
In the previous chapters, we have reviewed important definitions and results regarding
to risk theory and variance reduction techniques. The goal of this chapter is to present
Monte Carlo Estimators for the Risk Measures presented in chapter one, the Value at
Ruin and the Tail Value at Ruin.

First, we show the results considering exponential random losses for the Cramer
Lundberg risk model. Afterthat, we present an extension of the results considering
random losses following a Weibull distribution with Weibull index bigger and smaller
than one, since the index equals to one corresponds to the exponential distribution.
The estimations that we present in this chapter are based on an adequate estimation
of the probability of ruin in the tails.

3.2 Monte Carlo Estimator for the Value at Ruin.
As we stated in 1.6

ψ(r0) = 1− FS(r0)
Where S = supt≥0 Lt and Lt represents the loss process. Moreover, we note that the
probability of ruin

ψ(ro) = P (inf
t≥0

Yt < 0)

and also we have that the time of ruin is given by:

T =
{

inf{t > 0 : Yt < 0} If the infimum exists,
0, otherwise (3.1)

From this, we can conclude that

ψ(r0) = P (S > r0) = P (T <∞) = 1− FS(r0)



28
Chapter 3. Monte Carlo Estimators for VaRu and TVaRu of the Maximal

Aggregated Loss.

T is the first time when the reserve Yt is greater than the initial capital r0.
For large values of r0, the computation of P (S > r0) is a rare event and it is not

too obvious to estimate it, since we do not know how to simulate S in infinite time
and we do not know when the random variable reaches its supremum. For that reason
we work with the equivalent expression ψ(r0) = P (T <∞).

With the estimated probability of ruin, we can construct the distribution function
of the maximal aggregate loss S and numerically find the root of the equation

F̂ (V aRu(ε)) = 1− ε

in order to get the estimator for the Value at Ruin.

3.3 Monte Carlo estimator for the probability of
ruin

Since our previous results, we can consider this problem as the estimation of P (T <
∞), the estimation of this quantity using the Monte Carlo method, is relatively
straightforward. In each simulation step up to time τ and the result of the i − th
simulation Zi is equal to 1 if ruin occurs between [0, τ ] and 0 if not. After n runs the
Monte Carlo estimator is given by

Ẑ = 1
n

n∑
i=1

Zi

This is summarized in the next algorithm:

Data: Z1, ..Zn
Result: Monte Carlo Estimator of the probability of ruin ψ(r0)

1 Initialize the simulation setting Y0 = r0 and t = 0
2 Generate an exponential interarrival time I with parameter λ and a random loss

with a distribution F .
3 If t+ I > τ return Zi = 0. If not, Yt = Yt + cI −X and If Yt < 0 return Zi = 1.

Set t = t+ I. Otherwise, return to step 2.
Algorithm 2: Montecarlo Estimator of the Probability of Ruin

3.4 Importance Sampling Estimator of the proba-
bility of ruin.

We have implemented importance sampling via the exponential change of measure of
the random variable T . We consider:

z(x) = ψ(x) = P (T <∞)
= Eθ[LT,θ1{T<∞}]
= Eθ[e−θLT+Tκ(θ)

1T<∞]
(3.2)
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In order to choose a value of θ, we need to ensure that Pθ(T <∞) = 1 that follows
from the fact that the changed drift in the exponential change of measure is given by
µθ = κ′(θ). Therefore, we can perform simulation by Monte Carlo method considering
Z(x) = LT,θ.

Another important fact is that

MXθ(v) =
∫
R
evxdFθ

=
∫
R
evxeθx−κ(θ)dF

=
∫
R
e(v+θ)xe− logMX(θ)dF

= 1
MX(θ)

∫
R
e(v+θ)xdF

= MX(v + θ)
MX(θ)

(3.3)

Aditionally, we conclude that:

κXθ(v) = κ(v + θ)− κ(θ)

In the insurance context the positive solution of κX(v) = 0 is called the adjustment
coefficient and we note this by r. This value is optimal and ensures that Pθ(T <∞) = 1.
Considering θ = r in the expression 3.2 the variable T is vanished and we get the next
expression.

ψ(r0) = Eθ[e−θLT+Tκ(θ)
1T<∞]Er[e−rLT ]

= Er[e−r(D(r0)+r0)]
= err0Er[erD(r0)]

Where we used the fact that D(r0) = Lt − r0 = −Yt, that is called the overshoot

3.5 Monte Carlo Estimator of the Tail Value at
Ruin.

According to the definition of Tail Value at Ruin given in chapter 1, we have that

TV aRu(ε) = E[S|S > V aRu(ε)]
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we can express this quantity as follows:
TV aR(ε) = E[S|S > V aRu(ε)]

= E[S1{S>V aRu(ε)}]
P (S > V aRu(ε))

= E[V aRu(ε)1{S>V aRu(ε)} + [S − V aRu(ε)]+]
P (S > V aRu(ε))

= V aRu(ε) + 1
P (S > V aRu(ε))E[S − V aRu(ε)]+

= V aRu(ε) + 1
1− εE[S − V aRu(ε)]+

(3.4)

Now we consider the next result:
E[S − V aRu(ε)]+ = E[(X − a)1{S−V aRu(ε>0)}]

= E[(S − V aRu(ε)1{S>V aRu(ε)})]
= E[S1{S>V aRu(ε)}]− E[V aRu(ε)1{S>V aRu(ε)})]
= E[S1{S>V aRu(ε)}]− V aRu(ε)P (S > V aRu(ε))
= E[S1{S>V aRu(ε)}]− V aRu(ε)(1− ε)

(3.5)

Consequently we get

TV aRu(ε) = 1
1− ε

∫ ∞
V aRu(ε)

sf(s)ds (3.6)

However, since we do not know the distribution of S we can not generate S direclty.
However, we know a relation between the previous expression and the probability of
ruin, whose estimator was computed at the beginning of this chapter. We proceed in
the next way. ∫ ∞

V aRu(ε)
sdF (s) = −

∫ ∞
V aRu(ε)

sd{1− F (s)}

Using partial integration we have∫ ∞
V aRu(ε)

{1− F (s)}ds− [s{1− F (s)}]|∞V aRu(ε)

Since ψ(x) = 1− F (x) and F (s)→ 1 when s→∞∫ ∞
V aRu(ε)

{ψ(s)}ds− V aRu(ε)
(3.7)

Using the last expression in our previous results give us:

TV aRu(ε) = 1
1− ε

∫ ∞
V aRu(ε)

ψ(s)ds+ V aRu(ε) (3.8)

To compute the integral related to the last expression, we fit the simulated points by
importance sampling in the tail, starting in the V aRu estimated until the intersection
of the model fitted and the horizontal line FS(r0) = 1. This procedure is performed
with the points obtained after importance sampling, due to the lower variance reduction.
The idea behind this is that the simulated points has lower variability than the Crude
Monte Carlo method.
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3.6 Exact probabilities of ruin in infinte time using
the Pollaczeck-Khinchine formula

For the Heavy tailed case, we have followed a different approach than generate the
risk process. We consider the next representation, let R1 be the height of the first
record of {Lt}t≥0. Then R1 is the overshoot whose d.f is

FR(y) = 1
µ

∫ y

0
{1− F (x)}dx ∀y ≥ 0

Then R2 is the height of the second record minus R1, R3 the height of the third
record minus (R1 +R2) and so on. Due to the independency and stationarity of the
increments of {Lt}t≥0 R1, R2, ... are i.i.d.

Let N , the number of records (in infinite time horizon), the probability of no
records is p = 1−ψ(0) = R(0). If observe a record is a failure and observing no records
is a success, then N is the number of failures to obtain one sucess. It means that
N ∼ Geom(ρ) and P (N = n) = (1−ρ)nρ n = 0, 1, 2, ... The individual experiments of
geometric distributions are indeed independent and with the same success probability.
Because {Lt}t≥0 has independent and stationary increments. Thus

S =
N∑
j=0

Rj , R0 = 0

and
P (N = n) = ψn(0){1− ψ(0)} = β

(1 + β)n+1 n = 0, 1, ...

where β is the security loading.

3.7 Monte Carlo simulation using the Pollaczeck-
Khinchine formula

We consider the compound Poisson risk model, let X1, X2, ... be i.i.d with common
density F0(x) = F̄ (x)

µF
that is the integrated tail distribution of F . Let Sn = X1 +X2 +

....+Xn and let K be independent and geometric with parameter ρ then

P (K = k) = (1− ρ)ρk

The Pollaczeck-Khinchine formula may be write as

ψ(u) = P (M > u)

where M = Sk. Thus ψ(u) = z = z(u) = EZ with Z = I{M>u} may be generated
with the next algorithm.
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Data: Z1, ..Zn
Result: Monte Carlo Estimator of the probability of ruin ψ(r0) using the

Pollaczeck-Khinchine formula
1 Generate K as geometric
2

P (K = k) = (1− ρ)ρk

Generate X1, X2, ..., Xk from the density F0(x) and let M ← Sk. if M > u
then

3 Z ← 1
4 else
5 Z ← 0
6 end
7 ZMC = 1

n

∑N
i=1 Zj

Algorithm 3: Monte Carlo Estimator of the probability of ruin
As crude Monte Carlo estimator is not efficient for large values of u, for that reason

we need to combine it with some variance reduction methods. In this case we are
going to use the control variate estimator proposed in (S Asmussen & Binswanger,
1997). and conditional simulation algorithms. Both approaches were found in the
work of (S Asmussen & Binswanger, 1997) as well as some references on (H. Albrecher
et al., 2017)

3.7.1 Asmussen Kroese estimator for the Probability of Ruin

Result: Monte Carlo Estimator of the probability of ruin ψ(r0) using the
Pollaczeck-Khinchine formula

1 Generate K = K(i) as geometric
2

P (K = k) = (1− ρ)ρk

Generate X1, X2, ..., Xk−1 from the density F0(x) and let M ← Sk.
3 Calculate M (i)

K−1 = max{X(i)
1 , ..., X

(i)
K−1 and S(i)

K−1 = ∑K−1
j=1 X

(i)
j

4 Set Z(i)(u) = K(i)F̄0(max{M (i)
K−1, u− S

(i)
K−1})

5 ZMC = 1
n

∑n
i=1 Z

(i)(u)
Algorithm 4: Asmussen-Kroese estimator of the probability of ruin

The performance of the previous algorithm can be improved considering control
variates. This aditional variation is proposed in (Søren Asmussen & Kroese, 2006). In
this work, since in the subexponential distribution case, the tail probability of the sum
is asymptotically equal to n times the tail probability of each single random variable,
NF̄0(u) is proposed as a control variate. Then the Control variate estimator has the
form:

ZCV = NF̄0(max{MK−1, u− SK−1})− F̄0(u)) + E(N).F̄0(u) (3.9)
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3.7.2 Estimation of the probability of ruin by conditional
simulation

Besides the control variate approach to estimate the probability of ruin, we can use a
conditional simulation algorithm.

Conditional Simulation

The next algorithms has been proposed The problem is to estimate z = E[Z], where Z
is a random variable on (Ω,F), let W be a F −measurable r.v., then the conditional
Monte Carlo estimator of z is:

Zcond = E[E[Z|W ]]
= E[Z]
= z

Furthermore,

V ar(Z) = V ar(E[E[Z|W ]]) + E[V ar(Z|W )]

= V ar(Zcond) +
≥0

E[V ar(Z|W )]︸ ︷︷ ︸
≥ 0

Therefore, this method always leads to a reducction of variance, but it will not always
to find an approaipate Zcond that works for this purpose.

Conditional Monte Carlo algorithm

ψ(u) = P (X1 +X2 + ...+XK > u)
= E[P (X1 +X2 + ...+XK > u)|K = k,X1, X2, ..., Xk−1]
= E[B̄0(u−X1 − ...−Xk−1)]

Thus we only generate X1, ..., Xk−1, compute Y = u−X1− ...−Xk−1 and we set Z =
B̄0(Y ), the probability that the next claim causes ruin. We obtain the next algorithm.

Result: Probability of ruin ψ(u)
1 Generate Ki ∼ Geo(ρ)
2 Generate X i

1, X
i
2, ..., X

i
Ki−1 from the density b0 and let

Yi = u−X i
1 −X i

2 − ...−X i
Ki−1

3 Let Zi = B̄0(Yi), Zi = 1 if Yi < 0
4 Repeat steps 1 to 3 n times.
5 Estimate ψ(u) by ZMC = 1

n

∑n
i=1 Zi

Algorithm 5: Conditional MC algorithm
We deal with the rare event by using the idea given before. We write the probability

of ruin ψ(u) as conditional expectation
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Conditional Monte Carlo algorithm using order statistics.

The next algorithm, is not much complicated than the conditional one. It was
proposed in (S Asmussen & Binswanger, 1997). The idea is that for subexponential
distributions essentially one large claim causes ruin. This problem is solved
by discarding the largest of the Xi and considering only the remaining ones.

Result: Probability of ruin ψ(u)
1 Generate Ki ∼ Geo(ρ).
2 Generate X i

1, X
i
2, ..., X

i
Ku−1 from the density b0 and let

Yi = u−X i
(1), X

i
(2), ..., X

i
(Ku−1) and mi = X i

(ki−1)

3 Let Zi = B̄0(Yi∨mi)
B̄0(mi)

.
4 Repeat steps 1 to 3 n times.
5 Estimate ψ(u) by ZMC = 1

n

∑n
i=1 Zi

Algorithm 6: Conditional MC algorithm

3.8 Some efficiency criteria
In order to know the performance of a Monte Carlo estimator for small probabilities,
we introduce two performance criteria, base on the relative length of the corresponding
confidence interval. We require that for a sequence of small probabilities, the variance
of the estimator should converge faster to zero than the sequence itself. We consider a
sequence of events A(u) dependending on a parameter u with probabilities

P (A(u)) := z(u)→ 0 for u→ 0

Definition 3.1 (Bounded Relative Error). An unbiased estimator Z(u) of z(u) is
said to have a bounded relative error it if satisfies

lim sup
u→∞

V ar(Z(u))
Z(u)2 <∞

Definition 3.2 (Logarithmic efficiency). An unbiased estimator Z(u) of z(u) is said
to be logarithmically efficient or asymptotically efficient if it satisfies

lim sup
u→∞

V ar(Z(u))
Z(u)2−ε = 0 ∀ε > 0

In (S Asmussen & Binswanger, 1997), is shown that the conditional simulation
algorithms are not efficient assymptotically when heavy tailed Weibull claim amounts
are considered. However,is mentioned in that work that according to the numerical
experience is convincing applying conditional simulation.

As we have seen in the algorithms presented in this chapter, we need to know how
to simulate random variables R with the integrated tail distribution Weibull. For this
purpose we are going to use an important method of simulation called the method of
acceptance-rejection that is a general technique for generating random variables with
agiven distribution.
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3.9 The acceptance rejection method
Supposing that we are interested in simulate random variables with distribution F ,
whose density is given by f , for which ∀X ∈ R, f(x) = ch(x)g(x), where c is a constant,
h has density function whose support is included in the support of f , and g is a function
taking values on [0, 1], g is often called the shrinkage function and c.h is the envelope.

Data: f, c, h, g
Result: Random variable with distribution F

1 Generate U ∼ U(0, 1) and Y with density h independently.
2 Generate U ≤ g(Y ) accept Y as a realization of f . note that

U ≤ g(Y )⇔ U ≥ f(Y )
ch(Y ) ⇔ Uc.h(Y ) ≤ f(Y )

3 If U > g(Y )→ discard both U and Y and start again.
Algorithm 7: Acceptance Rejection algorithm

more details about this simulation method can be found on (Søren Asmussen &
Glynn, 2007) and (Ross, 1990)

3.9.1 Acceptance Rejection method for generating random
observations from the Weibull integrated tail distribu-
tion.

The integrated tail density is given by the next expression:

F0(x) = 1
µF

∫ x

0
F̄ (t)dt

let us call its density as f0(x), note that in this case F (x) = 1−exp(λxτ ). Since we are
considering the heavy tailed case τ ∈ (0, 1) and µF = λΓ(1 + 1

τ
). We consider h(x) of

the acceptance rejection algorithm, as the density of the exponential distribution with
rate parameter λ. By the inverse transform method, If U ∼ U(0, 1) we can generate
an observation from the exponential distribution using

X = −1
λ
log(1− U)

.
We need to find c such that f0(y) ≥ ch(y) ∀y > 0. i.e c = max f0(y)

h(y) .
let

g(y) = f0(y)
h(y) = λµF exp(−λy + (λy)τ )

⇒ g′(y) = µFλ
2 exp(−λy + (λy)τ ){τ(λy)τ−1 − 1}

.
Therefore g′(y) = 0⇒ τ(λy)τ−1 − 1 = 0 since λ2µF exp(−λy + (λy)τ ) 6= 0

⇒ y = 1
λ
τ {−( 1

τ−1 )}
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We can show that for this value that g′′(y) < 0. In conclusion

c = max f0(y)
h(y) = λµF exp(−τ−( 1

τ−1 ) + τ−( τ
τ−1 ))

and f0(y)
h(y) = exp(−λy + (λy)τ −K) with K = −τ−( 1

τ−1 ) + τ−( τ
τ−1 ).

Consequently, the algorithm for generating random variables from integrated tail
Weibull distribution is the next one.

Data: λ, τ
Result: Random variable with Integrated tail distribution Weibull

1 Generate U1 ∼ U(0, 1) and set Y = − 1
λ
log(1− U1).

2 Generate U2 ∼ U(0, 1) and if U2 < exp(−λy + (λy)τ −K) set X = Y , otherwise
return to step 1.

Algorithm 8: Acceptance Rejection algorithm for generating Integrated tail
Weibull distributed random variables.
For the estimation of the probability of ruin using the Pollaczek-Khinchine formula,

the last algorithm is very important. Due to in the second step we alays need to
generate random variables with the integrated tail distribution.



Chapter 4

Numerical Examples

In this chapter we present the numerical results obtained after implementing the
algorithms proposed in chapter 3.

4.1 The method of Monte Carlo

4.1.1 Cramer Lundberg Risk model with exponential claim
amounts.

As we have seen before, is not so easy to simulate the maximal aggregated loss, since
the process is random we can not know when the process reaches its supremum or
maximum.

For that reason, we proceed by simulating the risk process until ruin is reached.
Then we store all the variables involved.

The next code performs the algorithm 2 given in section 3.3. The output of the
function used is a list containing two objects. The first one called data that is a
list containing n risk processes until time τ . The columns of the first object called
data are the time, that is the random time of the claim following an exponential
distribution, level: that is the Yt, i.e the reserve at time t, the interarrival time that
follows an exponential distribution and the amount of the claim, that for this example
is exponentially distributed. The second object is a logical vector that means

TRUE = 1

if the process reached ruin i.e when the reserve is Yt ≤ 0 and

FALSE = 0

otherwise. We have specified a max time τ since we can not perform until infinity.
An example of the output of the code with rate of exponential interrival time

λ = 2, security loading θ = 0.3, claim rate of the exponential claim amount λclaim = 2,
initial capital u0 = 5, time horizon T = 10, Number of simulations runs = 2.
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prob.ruin<-function(lambda,theta,claimrate,T,u0,runs){
c <- (1 + theta ) * lambda /claimrate ;
result <- c (); # Result
data<-list()
for (r in 1: runs )
{

time <- 0 # Keep track of the time
level <- u0 # Keep track of the level
interarrivaltime <- rexp (1, lambda )
table<-NULL
i<-1
while ( time + interarrivaltime < T)
{

# A new claim arrives
time <- time + interarrivaltime
claim <- rexp (1, claimrate )

# Update level
level <- level + c* interarrivaltime - claim
table<-rbind(table,c(time,level,interarrivaltime,claim))
if( level < 0)
{

break ;
}

interarrivaltime <- rexp (1, lambda );

i<-i+1
}
data[[r]]<-table
result <- c( result , level < 0);

}
return(list(data,result))

}
example<-prob.ruin(lambda=2,theta=0.3,claimrate=2,u0=5,T=10,2)
colnames(example[[1]][[1]])<-c("time","level","inter.arrival.time",

"claim amount")
example

[[1]]
[[1]][[1]]

time level inter.arrival.time claim amount
[1,] 1.306139 5.983107 1.306138805 0.71487335



4.1. The method of Monte Carlo 39

[2,] 1.513081 5.786008 0.206942036 0.46612390
[3,] 1.862431 6.163184 0.349349963 0.07697867
[4,] 2.130366 6.313628 0.267935068 0.19787165
[5,] 2.729329 6.880402 0.598963542 0.21187873
[6,] 2.823897 6.944416 0.094568047 0.05892472
[7,] 4.817025 9.382364 1.993127729 0.15311752
[8,] 6.321820 10.843042 1.504794558 0.49555513
[9,] 6.701808 11.049632 0.379988733 0.28739488

[10,] 6.706679 10.683044 0.004870738 0.37291995
[11,] 7.218886 11.034379 0.512206290 0.31453374
[12,] 7.994975 11.684889 0.776089649 0.35840659
[13,] 9.855096 13.936539 1.860120448 0.16650624

[[1]][[2]]
[,1] [,2] [,3] [,4]

[1,] 2.255470 7.915038 2.2554698 0.01707321
[2,] 2.387754 7.621327 0.1322841 0.46568027
[3,] 2.518967 7.728471 0.1312133 0.06343338
[4,] 2.647943 7.497266 0.1289755 0.39887296
[5,] 3.083395 7.955656 0.4354526 0.10769776
[6,] 3.290652 7.675654 0.2072563 0.54943590
[7,] 3.461647 7.863720 0.1709950 0.03422701
[8,] 3.753011 7.351681 0.2913644 0.89081288
[9,] 4.749244 7.413731 0.9962328 1.23305278

[10,] 5.051921 7.556109 0.3026771 0.25110203
[11,] 5.207139 7.257842 0.1552183 0.50005083
[12,] 5.346481 6.755603 0.1393416 0.68338262
[13,] 5.545584 6.843042 0.1991028 0.17139463
[14,] 5.749384 6.462124 0.2038006 0.64585905
[15,] 8.151954 8.856750 2.4025699 0.72871542
[16,] 8.619643 8.603803 0.4676892 0.86094282
[17,] 8.749269 8.562237 0.1296256 0.21007946
[18,] 9.171773 7.211791 0.4225037 1.89970047
[19,] 9.619876 7.403925 0.4481036 0.39040052

[[2]]
[1] FALSE FALSE

To compute the probability by the Monte Carlo estimator we consider the average
of the elements of the vector result after a considerable number of runs. For the
computation of the probability of ruin in infinte time horizon we consider a large value
of T , we have chosen T = 1000.

We have compared the results of this Monte Carlo estimation with the analytical
formula of the probability of ruin of the Cramer Lundberg Risk model with exponential
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claim amounts, in this case it should be approximately the same. For example with
the same parameters given before, we perform 1000 runs with time horizon T = 100.
We also include the equivalent solution using the actuar library of the R software1.
To summarize the function of this we present the next table, where every row show us

Probability of Ruin
Monte Carlo Estimator 0.0720

Analytical Formula 0.0765
actuar package 0.0765

the probability of ruin given an initial capital u0 = 5, 10, 15, 20 for a different number
of simulations 100, 1000, 10000.

Number of runs
u0 100 1000 10000 Erlang
5 0.1600 0.1380 0.1602 0.1574
10 0.0200 0.0280 0.0291 0.0297
15 0.0000 0.0080 0.0047 0.0056
20 0.0000 0.0020 0.0008 0.0011

We can conclude from the last table that if we increase the initial capital, we will
need more simulations. For example if we suppose that the probability of ruin is 0.001,
it means that we would need at least 1000 simulations in order to obtain one ruin.

Something useful also is to construct the distribution of the maximal aggreagate
loss, given by the complement of the probability of ruin. For that we consider a vector
of initial capitals and run the function given.

For this example we consider a vector of 40 initial capitals from u0 = 1 to u0 = 40

1Package with functions and data sets for actuarial science, more information can be found on
https://cran.r-project.org/web/packages/actuar/index.html
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Figure 4.1: Distribution of the maximal agreggated loss

4.2 Estimation of the probability of ruin via Im-
portance Sampling.

For the estimation using the importance sampling approach, we need to compute the
Lundberg coefficient.

4.2.1 The adjustment coefficient
In the insurance context, the Lundberg coefficient that is the positive solution of
MS(v) = 1 coincides with the adjustment coefficient of the Cramer Lundberg Risk
Process.

Definition 4.1 (adjustment coefficient). The adjustment coefficient r is the positive
solution in v of

E[eL1v] = 1

We determine the adjustment coefficient considering exponential claim amounts.
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Where L1 = Z1 − c is the loss process at time 1. Note that

ML1(v) = MZ1(v)e−vc

⇔ exp{λ(MX(v)− 1)} = e−vc

⇔ λ[MX(v)− 1]− vc = 0
⇔MX(v) = 1 + (1 + β)µv

Where MX is the moment generating function of X1 and µ = E[X1]. For the
computation of the adjustment coefficient, we have generated the next code.

The parameters considered are: λ = 2, β = 0.1, claim rate= 2, u0 = 5, T = 1000

##Define the moment generating function exponential claim amounts

lambda=2
theta=0.1

claimrate=2
u0=5
T=1000

mgfexp1<-function(x)(1/(1-(1/claimrate)*x))
fun1<-function(x)(1/(1-(1/claimrate)*x))-((1+theta)*(1/claimrate)*x)-1

x<-seq(0,10,length.out = 500)
y<-fun1(x)

####premium rate
c <- (1 + theta ) * lambda / claimrate

####Computation of the adjustment coefficient

r<-uniroot(fun1,interval=c(0.1,0.5))$root
r<-(claimrate)-(lambda)/c

#We check if our adjustment coefficient is correct with the
#function provided by the actuar package

adjCoef(mgf.claim = mgfexp1,premium.rate = c,
upper.bound = 1,mgf.wait = 1/(1-0.5*x))

[1] 0.1818182

#Our solution
r

[1] 0.1818182
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We see that the analytical solution coincides with the solution given by our code and
the solution of an existent package.

With the value of the adjustment coefficient we generate the new rate λr that is
obtained after the exponential tilt. Considering this value and since the compound
poisson process after exponential tilt is again a compound Poisson process we can use
the first code that computes the risk process until ruin is reached. Note that in this
case we perform a small number of runs.

Let us see an example about the computation of the probability of ruin based on
the Cramer Lundberg Process with exponential claim amounts. Since we know the
analytical formula for this probability of ruin we can compare our results with the
Monte Carlo approach and the Importance Sampling approach.

The parameters used for the next example are the next ones: initial capital u0 = 30,
security loading beta = 0.1, claim rate 2.

prob.ruin.erlang(30,beta=theta,claimrate=2)

[1] 0.003888018

We present the next plot that as a results of the simulations using the importance
sampling method vs the Crude Monte Carlo method, we have included the time
horizon T = 1000 and a maximum number of simulations 5000. The rate of the
interarrival times λ = 2.
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Figure 4.2: Importance Sampling Method vs Crude Monte Carlo for
the computation of the Probability of Ruin for different number of
simulations

We can see that for the Crude Monte Carlo estimator for different number of
simulations the variance present a notorious oscillation. In contrast the red line that
depicts the estimation using the importance sampling method is closer than the real
value given by the blue segmented line. The importance sampling estimation presents
smaller variance than the Crude Monte Carlo estimation.

4.3 Estimation of the Value at Ruin.
For the Value at Ruin V aRu we fix the level α = 0.01, i.e we are looking for the
quantile at level ε = 0.99. In order to do that, we generate the probability of ruin
for several initial capitals. Since we know that FS(r0) = 1 − ψ(r0) we construct
the distribution of the maximal aggregated loss S, the desired quantile will be the
intersection between the distribution and the horizontal line ε = 0.99.

First for comparison, we compute the V aRu(0.99) using the explicit formula, that
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can be deducted from the fact that

ψ(x) = 1
1 + β

e−rx

Since we know that FS(x) = 1− ψ(x) then

FS(x) = 1− 1
1 + β

e−rx

and the ε− quantile is given by

log[(1− ε)× (1 + β)× (−1
r

)]

is<-log((1-0.99)*(1+theta))*(-1/r)
is

[1] 24.80423

prob.ruin.erlang(is,beta=theta,claimrate=2)

[1] 0.01

The exact V aRu at level 0.99 is equals to 24.804023.
The next plots show the result of the simulation schemes used. We compare the

Monte Carlo simulation, represented by the blue points, with the importance sampling
estimation represented by the red points. The segmented black line is the theoretical
value of the probability of ruin computed with the analytical formula. Is evident that
the simulation provided by the importance sampling approach is very similar to the
exact value of the probability of ruin. In the first plot we see the distribution of the
maximal aggregated loss S in a range of initial capitals [0, 30]. The second plot shows
the same but in a smaller range in order to see better wich approximation is more
accurate.
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Figure 4.3: VaRu Estimation
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Figure 4.4: VaRu Estimation

Starting from the simulation of the probability of ruin for several initial capitals,
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we look the closer point to the intersection intersection to the horizontal line, we can
generate different grids. in the previous plots the grid was performed considering
jumps of 0.5. After the first step there is evidence that the intersection is between
[23, 26]. Then we proceed computing new values of probability of ruin in such interval.
We repeat this process until a certain precision is reached. The codes used for this
estimation are the next:

####Monte Carlo Estimation
probruins<-NULL
# We define a sequence of initial capitals
init.cap<-seq(1,30,length.out = 59)
#We perform the Monte Carlo Estimation
for(i in c(1:length(init.cap))){
a<-prob.ruin(lambda=2,theta=0.1,claimrate=2,

u0=init.cap[i],T=1000,runs = 1000)[[2]]
probruins[i]<-mean(a)
}

#Plot of the graphic with black points
plot(approx(init.cap,1-probruins)$x

,approx(init.cap,1-probruins)$y,pch=20,cex=0.9)

##Importance Sampling Estimation

pruinis<-NULL
init.cap<-seq(1,30,length.out = 59)
for(i in c(1:length(init.cap))){
a<-prob.ruin(lambda=lambda1,theta=0.1,claimrate=2,u0=init.cap[i],

T=1000,runs = 1000)
index<-which(a[[2]]=="TRUE")
length(index)
lista<-a[[1]][index]
deficits<-unlist(lapply(lista, FUN=function(x)tail(x[,2],n=1)))
pruinis[i]<-(exp(-r*init.cap[i])*sum(exp(r*deficits))*(1/length(index)))
}
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4.4 Estimation of Value at Ruin considering
Weibull claim amounts with Weibull index
equals to 1

After we checked that the algorithm works pretty well in the Erlang case, we perform
the same steps considering Weibull claim amounts with τ = 1, that corresponds to the
Erlang model. We perform these computations in order to check if our programming
scheme is well defined. If it is done, since the R functions used are parametrized, we
can generalize for the case τ > 1.

prob.ruin<-function(lambda,scale,theta,shape,T,u0,runs){
mu<-scale*gamma(1+1/shape)
c <- (1 + theta ) * lambda*mu ;
result <- c (); # Result
data<-list()
for (r in 1: runs )
{

time <- 0 # Keep track of the time
level <- u0 # Keep track of the level
interarrivaltime <- rexp (1, lambda )
table<-NULL
i<-1
while ( time + interarrivaltime < T)
{

# A new claim arrives
time <- time + interarrivaltime
claim <- rweibull (1, shape = 1/shape,scale = scale)

# Update level
level <- level + c* interarrivaltime - claim
table<-rbind(table,c(time,level,interarrivaltime,claim))
if( level < 0)
{

break ;
}

interarrivaltime <- rexp (1, lambda );

i<-i+1
}
# names(table)<-c("time","level","intarriv","claim")
data[[r]]<-table
result <- c( result , level < 0);
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}
return(list(data,result))

}
#The shape parameter correspond to the Weibull index
mean(prob.ruin(lambda=2,theta=0.1,shape=1,

scale=0.5,u0=3,T=1000,runs=200)[[2]])

[1] 0.515

As well as in the first example with exponential claim amounts, we can consider a
vector of initial capitals and construct the probability of ruin for such capitals.

prob.ruin<-function(lambda,scale,theta,shape,T,u0,runs){
mu<-scale*gamma(1+1/shape)
c <- (1 + theta ) * lambda*mu ;
result <- c (); # Result
data<-list()
for (r in 1: runs )
{

time <- 0 # Keep track of the time
level <- u0 # Keep track of the level
interarrivaltime <- rexp (1, lambda )
table<-NULL
i<-1
while ( time + interarrivaltime < T)
{

# A new claim arrives
time <- time + interarrivaltime
claim <- rweibull (1, shape = 1/shape,scale = scale)

# Update level
level <- level + c* interarrivaltime - claim
table<-rbind(table,c(time,level,interarrivaltime,claim))
if( level < 0)
{

break ;
}

interarrivaltime <- rexp (1, lambda );

i<-i+1
}
# names(table)<-c("time","level","intarriv","claim")
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data[[r]]<-table
result <- c( result , level < 0);

}
return(list(data,result))

}
#Example
mean(prob.ruin(lambda=2,theta=0.1,shape=1,scale=2,

u0=1,T=50,runs=10)[[2]])

[1] 0.8

The moment generating function for the Weibull distribution that is given by the next
expression

∞∑
n=0

tnλn

n! γ(1 + n

k
) (4.1)

We constructed a code that evaluates the moment generating function of the Weibull
distribution, since it has an infinite sum, we consider a upper limit big enough,
quantities much away from this limit are almost zero.

##Define the moment generating function Weibull claim amounts
scale<-1/2
shape<-1
lambda<-2
betha<-0.1

mgfw <- function(x){
nmax <- 150
scale <- scale
shape <- shape
suma <- 0
for(n in 0:nmax){

suma <- suma + ((x^n)*((scale)^n))*gamma(1+(n/shape))/factorial(n)
}
return(suma)

}

mu<-(scale)*gamma(1+(1/shape))
c <- (1 + betha ) * lambda*mu

fun2<-function(x)1+x*(1+betha)*mu
x<-seq(0,10,length.out = 100)
y<-fun2(x)
###Plot that shows the intersection
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curve(mgfw, 0.1, 0.3, ylim = c(1.1 - 0.00051, 1.1 + 0.00062),
xlim = c(r - 0.00081, r + 0.00081),main="Adjustment Coefficient")

curve(fun2,from = 0,10,add = TRUE)

####Computation of the adjutment coefficient using other packages

library(rootSolve)
r<-uniroot.all(function(x) mgfw(x)-fun2(x),c(0.10,0.47))
r

[1] 0.18181

abline(v=r,col="red",lty=2)
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adjCoef(mgf.claim = mgfw,premium.rate = c,
upper.bound = 1,mgf.wait =1/(1-0.5*x))

[1] 0.1818182
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# After comparing we got the same results.

With the adjustment coefficient we can compute the value of λθ that is the tilted
parameter. We present the codes of the Monte Carlo estimation with the Importance
sampling estimation as well as the estimation using the analytical formula for the
erlang model (exponential claim amounts).
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Figure 4.5: Adjustment Coefficient

The resulting estimator of the value at ruin is given by closer point to the horizontal
line in 0.99. In the next plot we can see that the importance sampling estimator is
more accurate than the crude Monte Carlo estimator of the probability of ruin. In
this case also to fund the exact quantile is easier in the importance sampling case.
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Figure 4.6: Importance Sampling Method vs Crude Monte Carlo for
the computation of the Probability of Ruin for different number of
simulations (Weibull with index equals to one)

4.5 Value at Ruin considering the risk process
with light tailed claim amounts.

By definition of light tailed distribution, we know that the moment generating function
is finite. Therefore, we can apply the importance sampling method.

We have performed the simulation for the parameters: β = 0.1 scale α = 0.5,
shape τ = 1.5, initial capital u0 = 20,. Time horizon T = 1000, using a number
of simulations from 1000 to 10000 with jumps of 250. The result also shows an
important variance reduction. We have included the blue line as the sample mean of
the Importance sampling estimation.
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Figure 4.7: Importance Sampling Method vs Crude Monte Carlo for
the computation of the Probability of Ruin for different number of
simulations ( light tailed claim amounts)

Now, we present an example where we compute the VaRu at level 0.99 for a Cramer
Lundberg Risk Process with Weibull Claim amounts, we have started our simulation
scheme with several initial capitals between 1 and 30



4.5. Value at Ruin considering the risk process with light tailed claim amounts. 55

0 5 10 15 20 25 30

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Distribution of the Maximal Aggregate Loss 

Initial Capitals

F
S
(r 0

)

Monte Carlo Estimation

Importance Sampling 

Level 0.99

Figure 4.8: Distribution of the maximal agreggated loss using Monte
Carlo method and Importance Sampling

The previous plot show us that the intersection between the blue horizontal
segmented line and the red line obtained by using the Importance Sampling method is
intersected around 15 and 20. Now we expand the plot generating a simulation in that
interval to see the behavior of both approaches. Moreover, due to we can not compare
as before with the Erlang model, we have performed a polynomial regression of order
two that gave us a good fitting of the distribution of the maximal aggregated loss S.
After that, we have found the intersection of the importance sampling estimator of
the maximal aggregated loss and the horizontal line corresponding to the level 0.99.
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Figure 4.9: Value at Ruin Estimated

In this case the VaRu obtained is equals to 16.23.

4.5.1 Estimation of TVaRu

For the Tail Value at Ruin we can use the equation 3.8. We have simulated using
the importance sampling method from the VaRu found 16.23 until 40. Then we have
performed a polynomial regression for the tail that we are interested. The advantage
of the importance sampling method is that is easier to draw a line through the points
obtained in the simulation. On the other hand with the points obtained in the Monte
Carlo method, the linea obtained is not smooth. Also , we have computed the value
where the estimated function is equals to one, due to we approximate a distribution
function we truncate our computations until that value.
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Figure 4.10: Fitted distribution of the maximal agreggated loss in the
tail

The results of the fitted distributions of the Maximal Aggregated Loss in the Tail
are presented in the next tables. The godness of fit given by the regression is almost

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.2872e-01 8.1536e-03 1.02e+02 1.7431e-21

poly(x, 4, raw = TRUE)1 2.1812e-02 1.2684e-03 1.72e+01 8.2356e-11
poly(x, 4, raw = TRUE)2 -1.0447e-03 7.1873e-05 -1.45e+01 7.7168e-10
poly(x, 4, raw = TRUE)3 2.2194e-05 1.7598e-06 1.26e+01 4.9306e-09
poly(x, 4, raw = TRUE)4 -1.7587e-07 1.5727e-08 -1.12e+01 2.3002e-08

Table 4.1: Polynomial Regression in the tail of importance sampling
estimation

perfect, it can be concluded by the high value of R2 = 0.999. Therefore, the estimated
equation for the distribution of the maximal agreggated loss is:

F̂S(x) = 8.287174e−01+2.181237e−02x−1.044650e−03x2+2.219378e−05x3−1.758671e−07x4
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Using the relation ψ̂(r0) = 1 − F̂S(r0) we get an expression for the probability
of ruin in the tail. From here we can use the equation 3.8. In order to apply
the formula we compute first the integral

∫ 33.9
16.23 F̂S(x)dx = 6.01763 and finally the

TV aRu(0.99) = 1
1−0.016.01763 + 16.23 = 22.3084

4.6 Probability of Ruin of the Cramer Lundberg
Risk Process with heavy tailed claim amounts.

For the heavy tailed claims i.e considering a Weibull distribution with 0 < τ < 1.we
have used the Crude Monte Carlo algorithms considering conditional simulation, the
Asmussen-Kroese estimator and the Asmussen-Kroese Estimator considering control
variates.

These algorithms use simulation bby the Pollackzek-Khinchine formula. We know
that for this purpose we need to simulate the ladder heights that follows the integrated
tail distribution of Weibull.

The next function generates a vector of size n from the integrated tail distribution
by the acceptance rejection method presented in chapter 3.

#Algorithm 7
# shape: is the Weibull index,
# scale: is the scale parameter

geo <- function(shape, scale, n){
i <- 0
#scale is the scale parameter of the Weibull distribution
x <- numeric(n)
k <- shape^(-1/(shape-1))-shape^(-shape/(shape-1))
while(i < n){

i <- i+1
y <- -(scale)*log(1-runif(1))
if(runif(1) < exp((y/scale)-(y/scale)^shape - k)) {x[i] <- y}

}
if(n==0){x <- 0}
return(x)

}

###Use:
##The next line of code generates 10 random numbers from the
##Equilibrium distribution of Weibul
geo(0.5,2,10)

[1] 0.4046394 6.3806692 0.3632065 2.3112093 1.0261343 4.8584540 1.2651290
[8] 2.7188567 5.9253652 0.6684070
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4.6.1 Probability of Ruin via the Pollackzek-Khinchine for-
mula using the crude Monte Carlo algorithm

The next code computes the probability of ruin by the Pollaczek Khinichine formula
using Monte Carlo simulation. We have included in the output the confidence intervals,
the relative error, the empirical variance and the variable Ski that is the sum of the
ladder heights.

## Monte Carlo using Pollakzeck Khinchine formula
## The output is the estimated valueof the probability of ruin
## Method I--- Monte Carlo

sim1 <- function(theta, u0, nsim,shape,scale){
Sk<-NULL
Sk1<-NULL
rho <- 1/(1+theta)
z <- numeric(nsim)
for(i in 1:nsim){

k <- rgeom(1, prob=rho)
Sk<-sum(geo(scale=scale,shape=shape,n=k))
Sk1<-c(Sk1,Sk)
if(Sk> u0){

z[i] <- 1
} else {

z[i] <- 0
}

}
res <- list(Sk1=Sk1,media=mean(z),

liminf=mean(z) - 1.96*sqrt(var(z))/length(z),
limsup=mean(z) + 1.96*sqrt(var(z))/length(z),var=var(z),
rel.error=(var(z))/(mean(z)^2),
log.eff=abs(log(var(z)))/abs(log(mean(z)^2)))

return(res)
}
#### Example of usage
sim1(theta=0.3, u0=10, nsim=10,shape=0.4,scale=15)

$Sk1
[1] 0.000000 0.000000 0.000000 0.000000 7.214143 7.673459 0.000000
[8] 0.000000 0.000000 0.000000

$media
[1] 0

$liminf
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[1] 0

$limsup
[1] 0

$var
[1] 0

$rel.error
[1] NaN

$log.eff
[1] NaN

The algorithms 4 and 5 that are based on conditional simulation require two aditional
functions respectively. One of them extracts the highest claim amount after sorting
and the second one extracts the last claim amount.

4.6.2 Conditional Simulation of the probability of Ruin
The conditional simulation algorithms have been implementated by the next functions:

# Conditional simulation algorithm
sim2 <- function(theta, scale, shape, u0, nsim){

rho <- 1/(1+theta)
muB <- scale* gamma(1+1/shape)
z <- numeric(nsim)
for(i in 1:nsim){

k <- rgeom(1, prob=rho)
if(k<=1){

y <- u0
Bc <- (1/(muB*shape))*(incgam(y^shape, 1/shape))
z[i] <- 0

} else {
gen <- geo(scale=scale,shape=shape,n=k)
y <- u0 - sum(mmu2(gen))
if(y<0){

z[i] <-1
} else {

Bc <- (1/(muB*shape))*(incgam(y^shape, 1/shape))
z[i] <- Bc

}}
}

return(data.frame(media=mean(z),
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liminf=mean(z) - 1.96*sqrt(var(z))/length(z),
limsup=mean(z) + 1.96*sqrt(var(z))/length(z),var=var(z),
rel.error=(var(z))/(mean(z)^2),
log.eff=abs(log(var(z)))/abs(log(mean(z)^2))))

}
#### Example of usage
sim2(theta=0.3, u0=10, nsim=10,shape=0.4,scale=15)

media liminf limsup var rel.error log.eff
1 0 0 0 0 NaN NaN

4.6.3 Asmussen-Kroese Estimator

## Asmussen-Kroese
sim4 <- function(theta, scale, shape, u0, nsim){

rho <- theta/(1+theta)
muB <- (scale) * gamma(1+1/shape)
z <- numeric(nsim)
for(i in 1:nsim){

k <- rgeom(1, prob=rho)

if(k==0){
z[i] <- 0

} else if(k==1){
y <- u0
m <- 0
Bc <- (1/(muB*shape))*incgam(x=y^shape, a=1/shape)
z[i] <-0*((1/(muB*shape))*incgam(x=max(y,m)^shape, a=1/shape))

} else {
gen <- geo(scale=scale,shape=shape,n=k-1)
y <- u0-sum(gen)
m <- max(gen)
Bc <- k*((1/(muB*shape))*incgam(x=max(y,m)^shape, a=1/shape))

z[i] <- Bc

}
}
res <- data.frame(media=mean(z),

liminf=mean(z) - 1.96*sqrt(var(z))/length(z),
limsup=mean(z) + 1.96*sqrt(var(z))/length(z),
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variance=var(z),
rel.error=(var(z))/((mean(z)^(2))),
log.eff=abs(log(var(z)))/abs(log(mean(z)^2)))

return(res)
}

## Asmussen Kroesse and Control Variates

sim5<- function(theta, scale, shape, u0, nsim){
rho <- theta/(1+theta)
muB <- (scale) * gamma(1+1/shape)
z <- numeric(nsim)
for(i in 1:nsim){

k <- rgeom(1, prob=rho)

if(k==0){
z[i] <- 0

} else if(k==1){
y <- u0
m <- 0

Bc <- (1/(muB*shape))*incgam(x=y^shape, a=1/shape)
z[i]<-((1/(muB*shape))*(incgam(x=max(y,m)^shape, a=1/shape)-

incgam(x=u0^shape, a=1/shape)))+(((1-rho)/rho)*(1/(muB*shape))*(incgam(x=u0^shape, a=1/shape)))

} else {
gen <- geo(scale=scale,shape=shape,n=k-1)
y <- u0-sum(gen)
m <- max(gen)
Bc <- k*((1/(muB*shape))*(incgam(x=max(y,m)^shape, a=1/shape)-incgam(x=u0^shape, a=1/shape)))+(((1-rho)/rho)*(1/(muB*shape))*(incgam(x=u0^shape, a=1/shape)))
#sum(mmu(z4)[[1]])

z[i] <- Bc

}
}
res <- data.frame(media=mean(z),

liminf=mean(z) - 1.96*sqrt(var(z))/length(z),
limsup=mean(z) + 1.96*sqrt(var(z))/length(z),
variance=var(z),
rel.error=(var(z))/(mean(z)^2),
log.eff=abs(log(var(z)))/abs(log(mean(z)^2)))

return(res)
}

We see the performance of the functions implemented with the next example:
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4.6.4 Numerical Example considering heavy tailed claim
amounts

To estimate the probability of ruin, we consider Weibull distributed claim amounts
with shape parameter τ = 0.35, a scale parameter equals to 1, a security loading
β = 0.1 and a vector of initial capitals from u0 = 100, ...., 5000 with jumps of 100. In
this case we have gotten that the Crude Monte Carlo method fails, when the initial
capital takes large values. We have performed 5000 simumlations.

For the methods after applying some of the variance reduction techniques, we
present the plots of the one of efficiency measures presented before. In this case we
analyze the logarithmically efficiency of the methods, where we can verify that the
methods in general have a good performance.

0 1000 2000 3000 4000 5000

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

Logarithmic Efficiency

Initial Capitals

Conditional

Order Statistics

Asmussen−Kroese

AK−Control Variates

Conditional

Order Statistics

Asmussen−Kroese

AK−Control Variates

Figure 4.11: Logarithmic Efficiency of the simulation methods consider-
ing heavy tailed claim amounts

From the previous plot we can conclude that the better performance is reached
by the conditional algorithms as well as the Asmusse-Kroese estimator with control
variables. These algorithms as the definition given before states, when the initial
capital goes to infinity, the performance criteria is bigger than one.
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Also, we include a plot with the relative errors to check that when the initial
capital is large, the relative error is bounded.
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Figure 4.12: Relative errors of the simulation methods considering heavy
tailed claim amounts

From the previous plot, we can see that the methods work very well in the sense
of relative errors, we can see that when the initial capital goes to infinity, the relative
errors are bounded.

Now we have estimated the Value at Ruin using the methods presented. We have
fitted a regression line on the interval where the value at ruin is located approximately,
then with the regression line we have found the intersection between the estimated
regression line and the horizontal corresponding to the level of the quantile desired.
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Figure 4.13: Value at Ruin estimation considering heay tailed Weibull
claim amounts, using conditional simulation

V aRu(0.995)1 = 540.35
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Figure 4.14: Value at Ruin estimation considering heay tailed Weibull
claim amounts, using conditional simulation and order statistics

V aRu(0.995)2 = 555.5
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Figure 4.15: Value at Ruin estimation considering heay tailed Weibull
claim amounts, using the Asmussen-Kroese estimator

V aRu(0.995)1 = 1156.06
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Figure 4.16: Value at Ruin estimation considering heay tailed Weibull
claim amounts, using Asmussen Kroese estimator and control variates

V aRu(0.995)1 = 1126.005
From the these results, we can conclude that the conditional simulation methods,

could be underestimating the probability of ruin. Moreover, during the development
of numerical procedures, we have seen that these methods give similar values of
probability of ruin when the initial capital is significantly large.

4.7 Another approach for the Value at Ruin esti-
mation

Another way to approximate the quantile after simulating n replicates of S, is by

q̂1−ε = inf{x : F̂S(x) ≥ 1− ε}

From the simulated values for the probability of ruin, we can construct the empirical
c.d.f F̂S(x). Assuming that the density function fS exists and applying the central
limit theorem for quantiles,we can get a 95% confidence interval for the true value of
q1−ε by: Z(1−ε)(R+1) − 1.96

√
ε(1− ε)

fS(q̂1−ε)
√
n
, Z(1−ε)(R+1) + 1.96

√
ε(1− ε)

fS(q̂1−ε)
√
n


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where Z(1−ε)(n+1) is the empirical quantile (the (1− ε)(n+ 1) order statistic). Here,
since fS is not available, we can estimate it by a kernel density estimator for example.





Conclusions

The achievement of this thesis work had required the understanding of risk theory
concepts and stochastic simulation. We have studied one of the most important
concepts in risk theory that is the probability of ruin considering the Cramer Lundberg
Risk process with Weibull claim amounts. The probability of ruin is crucial in the
estimation of two risk measures, the Value at Ruin and the Tail Value at Ruin.
Therefore, the problem of its estimation has been more about the estimation of the
probability of ruin. We have presented variance reduction techniques as improvements
to the Crude Monte Carlo method.

The conclusions are the next:

• For the light tailed case, the performance of the importance sampling method
is evidently much better than the crude Monte Carlo method. The use of
this method allow us to get estimators of the probability of ruin with smaller
variance. This is helpful in the computation of the VaRu as well as the TVaRu,
since with the importance sampling simulation is easier to fit a polynomial
regression. In the example presented, the fit is almost perfect, with a statistic
R2 ≈ 1.

• The simulation of the path of the risk process takes more time in contrast to the
heavy tailed case where we used the Pollackzek Khinchine formula. However, it
is a good and useful way to understand how the risk process works and also due
to the importance sampling algorithm we require some quantities that can be
computed only with the simulation of the risk process.

• For the heavy tailed case, we have presented three approaches more than the
crude Monte Carlo method. One related to the control variates estimation, where
we used results of subexponential distribution and the simulation of variables
from the integrated tail distribution of Weibull by the acceptance rejection
method. This simulation method behaves more accurately than the crude Monte
Carlo, since as in the light tailed case the obtained points can be joined by a
regression line that also was fitted almost perfectly with a value of R2 ≈ 1.

• In the heavy tailed case, we have also proposed two conditional simulation
algorithms. The behaviour of both is very similar and present the same advantage
of the previous simulation methodologies. Since the variability is smaller than
the crude Monte Carlo, the simulated points for every initial capital can be
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joined by a regression line which is used to compute the TVaRu with the formula
3.8.

• The probability of ruin and the risk measures associated to this quantity, are
sensible to high values of initial capital, specially when the probabilities are very
low. For that reason the usage of variance reduction techniques is a good choice
to solve the problem.

• As we can see in the heavy tailed case, the Monte Carlo method without variance
reduction techniques, does not works properly. In our computations most of the
times with an adequate number of simulations the crude Monte Carlo method
simply gave us a probability of ruin equals to zero.

Extensions
After the understanding of these concepts an application including a diffusion or
Wiener process could be interesting.

The estimation of the value at ruin using a kernel density estimator, as we mentioned
at the end of chapter 4, is a different approach about how to solve this problem.
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